Export or edit this event...

Galois tech talk: Formal Verification of Cyber-Physical Systems

Galois, Inc
421 SW 6th Ave. Suite 300
Portland, OR 97204, US (map)



Formal Verification of Cyber-Physical Systems

speaker: Pavithra Prabhakar

abstract: Cyber-Physical Systems (CPS) refer to systems in which control, computation and communication converge to achieve complex functionalities. The ubiquitous deployment of cyber-physical systems in safety critical applications including aeronautics, automotive, medical devices and industrial process control, has pressurized the need for the development of automated analysis methods to aid the design of high-confidence systems. The talk will focus on an important feature of cyber-physical systems, namely, the mixed discrete-continuous behaviors manifesting as a result of the interaction of a network of embedded processors with the physical world. Hybrid Automata are a popular formalism for modeling systems exhibiting both discrete and continuous behaviors. We discuss formal approaches for the verification of hybrid automata. More precisely, scalable approaches based on approximations, including predicate abstraction, counter-example guided abstraction refinement and bounded error approximations, will be discussed in the context of safety and stability analysis. We will present applications of the techniques on hybrid automata models.

bio: Pavithra Prabhakar is on the faculty at the IMDEA Software Institute in Madrid, Spain, since 2011. Previously, she obtained her doctorate in Computer Science from the University of Illinois at Urbana-Champaign, from where she also obtained a masters in Applied Mathematics. She has a masters degree in Computer Science from the Indian Institute of Science, Bangalore and a bachelors degree from the National Institute of Technology, Warangal, in India. She spent the year between 2011-2012 at the California Institute of Technology as a CMI (Center for Mathematics of Information) fellow. Her main research interest is in Formal Analysis of Cyber-Physical Systems, more precisely, hybrid systems, with focus on both theoretical and practical aspects.